Docket Nos. 98-0252/0335 (Consol.) Staff Exhibit 11.0 Schedule 11.01

Ameritech Illinois

Capital Structure

Staff Proposal December 31, 1999

Component	Balance	Percent of Total Capital
Short term Debt	\$671,284,205	22.06%
Long-term Debt	<u>\$547,746,000</u>	18.00%
Total Debt	\$1,219,030,205	40.06%
Common Equity	\$1,824,500,000	59.94%
Total Capitalization	\$3.043.530.205	100.00%

Ameritech Illinois

Average Balance of Short-Term Debt

	End of Month	
	Balance of	Monthly
Month	Short-Term Debt	Average
June-99	\$398,000	
July-99	\$793,342,000	\$396,870,000
August-99	\$766,412,000	\$779,877,000
September-99	\$1,070,252,000	\$918,332,000
October-99	\$862,424,000	\$966,338,000
November-99	\$772,636,000	\$817,530,000
December-99	\$735,506,000	\$754,071,000
January-00	\$522,255,106	\$628,880,553
February-00	\$496,998,573	\$509,626,840
March-00	\$448,983,697	\$472,991,135
April-00	\$666,303,530	\$557,643,614
May-00	\$600,187,845	\$633,245,688
June-00	\$639,821,414	\$620,004,630
Average		\$671,284,205

Sources: Company Reponses to Staff Data Requests SDR-071 and JF-4.01.

Docket Nos. 98-0252/0335 (Consol.) Staff Exhibit 11.0 Schedule 11.03

Ameritech Illinois

Embedded Cost of Long-Term Debt As of December 31, 1999 (\$000)

						Unamortized		Annual		Annual
	Date	Maturity	Interest	Principal	Unamortized	Debt	Carrying	Coupon	Annual	Debt
Jssue	Issued	Date	Rate	Amount	Discount	Expense	Value	Interest	Amortization	Expense
Series H First Mortgage Bonds	07/01/63	07/01/03	4.375%	\$50,000	(\$17)	\$19	\$50,002	\$2,188	\$10	\$2,198
Debentures	03/15/93	03/15/24	7.250%	\$200,000	(\$1,923)	\$527	\$198,604	\$14,500	\$102	\$14,602
Debentures	07/01/93	07/01/23	7.125%	\$100,000	(\$1,278)	\$279	\$99,001	\$7,125	\$66	\$7,191
Notes	02/01/94	02/01/04	5.800%	\$100,000	(\$308)	\$18	\$99,710	\$5,800	\$79	\$5,879
Debentures	02/01/94	02/01/25	6.625%	\$100,000	(\$2,536)	\$35	\$97,499	\$6,625	\$103	\$6,728
Capital Leases				\$2,930			\$2,930	\$245	\$0	\$245
Total				\$552,930	(\$6,062)	\$878	\$547,746	\$36,483	\$360	\$36,843

Embedded Cost of Long-term Debt 6.73%

Ameritech Illinois

The Discounted Cash Flow Model

Discounted cash flow (DCF) theory posits the value of an asset equals the sum of the future cash flows it generates, discounted by the investor-required rate of return. Specifically, the market value of common stock equals the present value of the expected stream of future dividends.

In its general form, the DCF model for a stock paying dividends quarterly can be mathematically stated as follows:

$$P ? \frac{D_{1,1}}{(1? k)^{x}} ? \frac{D_{1,2}}{(1? k)^{x?0.25}} ? \frac{D_{1,3}}{(1? k)^{x?0.50}} ? \frac{D_{1,4}}{(1? k)^{x?0.75}} ? \frac{D_{2,1}}{(1? k)^{x?1.00}}$$

$$? \frac{D_{2,2}}{(1? k)^{x?1.25}} ? \frac{D_{2,3}}{(1? k)^{x?1.50}} ? \frac{D_{2,4}}{(1? k)^{x?1.75}} ? ? ? ? \frac{D_{t,q}}{(1? k)^{x?m}} ? ?$$

$$(1)$$

where P = the current market value;

 $D_{t,q}$ = the expected dividend at the end of quarter q in year t, where q = 1 to 4 and t = 1 to ?;

k =the cost of common equity;

x = the elapsed time between the stock observation and first dividend payment dates, in years; and

$$m = t - 1 + 0.25 (q - 1).$$

If dividends grow annually at a constant rate then,

$$D_{t?1} ? D_{t?1,q}(1?g)$$
 (2)

where: g = the expected growth rate in dividends.

Substituting Equation (2) into Equation (1) produces:

$$P ? \frac{D_{0,1}(1?g)}{(1?k)^{x}} ? \frac{D_{0,2}(1?g)}{(1?k)^{x?0.25}} ? \frac{D_{0,3}(1?g)}{(1?k)^{x?0.50}} ? \frac{D_{0,4}(1?g)}{(1?k)^{x?0.75}} ? \frac{D_{0,1}(1?g)^{2}}{(1?k)^{x?1.00}}$$

$$? \frac{D_{0,2}(1?g)^{2}}{(1?k)^{x?1.25}} ? \frac{D_{0,2}(1?g)^{2}}{(1?k)^{x?1.50}} ? \frac{D_{0,4}(1?g)^{2}}{(1?k)^{x?1.75}} ? ? ? ? \frac{D_{0,4}(1?g)^{t}}{(1?k)^{x?t?0.25}} ? ?$$

$$(3)$$

Equation (3) has an infinite number of terms (t = 1 to ?). To obtain a finite number of terms, first multiply each side of the equation by the quantity (1+k)/(1+g):

$$\frac{P(1?k)}{(1?g)}? \frac{D_{0,1}(1?g)(1?k)}{(1?g)(1?k)^{x}}? \frac{D_{0,2}(1?g)(1?k)}{(1?g)(1?k)^{x?0.25}}? \frac{D_{0,3}(1?g)(1?k)}{(1?g)(1?k)^{x?0.50}}? \frac{D_{0,4}(1?g)(1?k)}{(1?g)(1?k)^{x?0.75}}? \frac{D_{0,1}(1?g)^{2}(1?k)}{(1?g)(1?k)^{x?1.00}}? \frac{D_{0,2}(1?g)^{2}(1?k)}{(1?g)(1?k)^{x?1.50}}? \frac{D_{0,4}(1?g)^{2}(1?k)}{(1?g)(1?k)^{x?1.75}}?? ? \frac{D_{0,4}(1?g)^{4}(1?g)^{4}(1?k)}{(1?g)(1?k)^{x?1.75}}?? ? (4)$$

Eliminating redundant terms produces:

$$\frac{P(1?k)}{(1?g)}? D_{0,1}(1?k)^{1?x}? D_{0,2}(1?k)^{1?(x?0.25)}? D_{0,3}(1?k)^{1?(x?0.50)}? D_{0,4}(1?k)^{1?(x?0.75)}$$

$$? \frac{D_{0,1}(1?g)}{(1?k)^{x}}? \frac{D_{0,2}(1?g)}{(1?k)^{x?0.25}}? \frac{D_{0,3}(1?g)}{(1?k)^{x?0.50}}? \frac{D_{0,4}(1?g)}{(1?k)^{x?0.75}}??? ? \frac{D_{0,4}(1?g)^{t?1}}{(1?k)^{x?t?1.25}}??$$
(5)

Next, subtract Equation (3) from Equation (5):

$$\frac{P(1?k)}{(1?g)}?P?D_{0,1}(1?k)^{1?x}?D_{0,2}(1?k)^{1?(x?0.25)}?D_{0,3}(1?k)^{1?(x?0.50)}?D_{0,4}(1?k)^{1?(x?0.75)}$$

$$?\frac{D_{0,1}(1?g)^{t}}{(1?k)^{x?t?100}}?\frac{D_{0,2}(1?g)^{t}}{(1?k)^{x?t?0.75}}?\frac{D_{0,3}(1?g)^{t}}{(1?k)^{x?t?050}}?\frac{D_{0,4}(1?g)^{t}}{(1?k)^{x?t?0.25}}.$$
(6)

(Consol.)

Staff Exhibit 11.0 Schedule 11.04

For
$$k > g$$
, as t ? ?, $\frac{D_{0,1}(1? g)^t}{(1? k)^{x?t?100}}$, $\frac{D_{0,2}(1? g)^t}{(1? k)^{x?t?0.75}}$, $\frac{D_{0,3}(1? g)^t}{(1? k)^{x?t?0.50}}$, and $\frac{D_{0,4}(1? g)^t}{(1? k)^{x?t?0.25}}$? 0.

Therefore,

$$\frac{P(1? k)}{(1? g)}? P? D_{0,1}(1? k)^{1?x}? D_{0,2}(1? k)^{1?(x?0.25)}? D_{0,3}(1? k)^{1?(x?0.50)}? D_{0,4}(1? k)^{1?(x?0.75)}$$

$$? \frac{4}{q?1} D_{0,1}(1? k)^{1?[x?0.25(q?1)]}.$$
(7)

The expression $(1+k)^{1-[x+0.25(q-1)]}$ is a future value interest factor. It measures the rate of return a dividend received in quarter q will earn if reinvested for 1-[x+0.25(q-1)] periods at the periodic opportunity cost k. A future value interest factor converts nominal to time values, thereby permitting the summation of cash flows paid at different times.

Multiplying each side by the expression (1+g) produces:

$$P(1?k)$$
 ? $P(1?g)$? $\sum_{q?1}^{4} D_{0,q} (1?k)^{1?[x?0.25(q?1)]}$. (8)

Finally, solving for *k* results in:

$$\frac{?}{?} D_{0,q}(1? g)(1? k)^{1?[x? 0.25(q?1)]}$$
 $k ? \frac{q?1}{P} ? g.$ (9)

To measure the cost of common equity k when growth g does not become constant until period?, first, restate Equation (1) as follows:

$$P ? \frac{D_{1,1}}{(1? k)^{x}} ? \frac{D_{1,2}}{(1? k)^{x?0.25}} ? \frac{D_{1,3}}{(1? k)^{x?0.75}} ? \dots ? \frac{D_{2,4}}{(1? k)^{x???0.25}} ? \frac{P_{2,4}}{(1? k)^{x???0.25}}$$

$$(10)$$

where: P_{?,4}¹? the market value at the conclusion of the short-term growth stage;
? ? the total length of the short-term growth stage.

Next, multiply each side of the equation by the factor $(1+k)^{x+?}$ -0.25:

$$P(1? k)^{x????0.25}$$
 ? $D_{1,1}(1? k)^{??0.25}$? $D_{1,2}(1? k)^{??0.50}$? $D_{1,3}(1? k)^{??0.75}$?? ? $D_{2,4}$? $P_{2,4}$ (11)

Finally, solve for k:

$$(1? k)^{x???0.25}? \frac{D_{1,1}(1? k)^{??0.25}? D_{1,2}(1? k)^{??0.50}? D_{1,3}(1? k)^{??0.75}??? ?D_{?,4}? P_{?,4}}{P}$$
(12)

$$k? \stackrel{?}{\underset{!}{\stackrel{?}{\cancel{D}_{1,1}}(1? k)^{??0.25}}{?} ? D_{1,2}(1? k)^{??0.50}}{P} \stackrel{?}{\underset{!}{\cancel{D}_{1,3}}(1? k)^{??0.75}}{? \dots ? D_{?,4}? P_{?,4}? \stackrel{?}{\underset{!}{\cancel{P}}}{?} \frac{1}{x????0.25} \stackrel{?}{\underset{!}{\cancel{P}}}{?}}{? 1.}$$
(13)

$$P_{?,4} ? \frac{\sum_{q?1}^{4} D_{?,q} (1? g_i) (1? k)^{1?[x? 0.25(q?1)]}}{k? g_i}$$

where: D?,q? the dividend paid in quarter q during the last year of the short-term growth stage; and

 $g_{\text{I}}\$? the long-term growth rate.

¹ P?, 4 is found by solving Equation (9) for the stock price:

Docket Nos. 98-0252/0335

(Consol.)

Staff Exhibit 11.0 Schedule 11.04

Ameritech Illinois

Growth Rate Estimates and Ranges

Company	Zacks <u>Earnings</u>	IBES <u>Earnings</u>	Average Growth Rate
Bell South Corporation	11.10%	10.94%	11.02%
CenturyTel Inc.	14.39%	15.10%	14.75%
SBC Communications	13.83%	13.00%	13.42%
Verizon Communications	11.87%	11.60%	11.74%
Hickory Tech Corporation	na	15.00%	15.00%

Ameritech Illinois Quarterly Dividends and Stock Prices as of September 6, 2000

		Current	Dividend			
Company	D _{0,1}	D _{0,2}	D _{0,3}	D _{0,4}	Next Dividend Payment Date	Stock Price
Bell South Corporation	\$ 0.190	\$ 0.190	\$ 0.190	\$ 0.190	11/1/2000	\$ 37.9400
CenturyTel Inc.	0.048	0.048	0.048	0.048	12/15/2000	28.0600
SBC Communications	0.244	0.244	0.254	0.254	11/1/2000	42.9400
Verizon Communications	0.385	0.385	0.385	0.385	11/1/2000	42.8800
Hickory Tech Corporation	0.110	0.110	0.110	0.110	12/5/2000	19.9400

Ameritech Illinois

Expected Quarterly Dividends

Company	D _{1,1}	D _{1,2}	D _{1,3}	D _{1,4}
Bell South Corporation	\$ 0.211	\$ 0.211	\$ 0.211	\$ 0.211
CenturyTel Inc.	0.055	0.055	0.055	0.055
SBC Communications	0.254	0.254	0.288	0.288
Verizon Communications	0.430	0.430	0.430	0.430
Hickory Tech Corporation	0.127	0.127	0.127	0.127

Ameritech Illinois

DCF Cost of Common Equity Estimates Constant Growth Scenario

Average	15.76%
Hickory Tech Corporation	17.70%
Verizon Communications	16.04%
SBC Communications	16.12%
CenturyTel Inc.	15.57%
Bell South Corporation	13.38%
Company	

Ameritech Illinois

DCF Cost of Common Equity Estimates Non-Constant Growth Scenario

Average	8.30%
Hickory Tech Corporation	8.67%
Verizon Communications	10.25%
SBC Communications	8.61%
CenturyTel Inc.	6.13%
Bell South Corporation	7.84%
Company	

Ameritech Illinois

Risk Premium Analysis

Interest Rates as of September 6, 2000

U.S. Trea	asury Bills ¹	U.S. Treasury Bonds ²			
Discount Rate	Effective Yield	Bond Equivalent Yield	Effective Yield		
6.03%	6.35%	5.71%	5.79%		

¹ ¹U.S. Treasury bill yields are quoted on a 360-day discount basis. The effective yield is determined as follows:

Error! Main Document Only. where days to maturity equals ninety-one days.

²The bond equivalent yield on U.S. Treasury bonds represents a nominal rather than an effective yield. The effective yield is calculated as follows:

Effective yield = $[1 + (bond equivalent yield ? 2)]^2$? 1.

Risk Premium Cost of Equity Estimates

Risk-Free Rate Proxy	Risk- Free Rate	Beta	Risk Premium	Cost of Common Equity
U.S. Treasury Bills	6.35%	+ 0.85 ?	(16.18% ? 6.35%) =	: 14.71%
U.S. Treasury Bonds	5.79%	+ 0.85 ?	(16.18% ? 5.79%) =	: 14.62%

Ameritech Illinois

Overall Cost of Capital

December 31, 1999

Component	Percent of Total Capital	Cost	Weighted Cost
Short term Debt	22.06%	6.61%	1.46%
Long-term Debt	18.00%	6.73%	1.21%
Total Debt	40.06%		2.67%
Common Equity	59.94%	11.80 - 14.40%	7.07 - 8.63%
	100.00%		

Weighted Average Cost of Capital

9.74 - 11.30%

Overall Cost of Capital Midpoint Estimate:

10.52%

(Based on cost of equity midpoint estimate of 13.10%)